LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2014

MT 1100-MATHEMATICS FOR PHYSICS

Date : 28/03/2014
Dept. No. \square Max. : 100 Marks
Time : 09:00-12:00

SECTION A

ANSWER ALL QUESTIONS.

1. Find the $n^{\text {th }}$ derivative of $e^{5 x}$.
2. Find the slope of the curve $r=e^{\theta}$ at $\theta=0$.
3. Write the expansion of $(1-x)^{-p} / q$.
4. Find the rank the matrix $\left(\begin{array}{ll}2 & 3 \\ 3 & 1\end{array}\right)$.
5. Find $\mathrm{L}\left(t^{2}+2 t\right)$.
6. Find $L^{-1}\left(\frac{1}{s(s+a)}\right)$.
7. Write down the expansion of $\tan 4 \theta$.
8. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
9. Two dice are thrown. What is the probability that the sum of the numbers is greater than 8 ?
10. If a Poisson variate X is such that $P(X=1)=2 P(X=2)$. Find the mean.

SECTION B

ANSWER ANY FOUR QUESTIONS.

11. Find the $n^{\text {th }}$ differential coefficient of $e^{x} \sin x \sin 2 x$.
12. Find the maximum value of $\frac{\log x}{x}$ for positive values of x.
13. Prove that $\log \frac{n+1}{n-1}=\frac{2 n}{n^{2}+1}+\frac{1}{3}\left(\frac{2 n}{n^{2}+1}\right)^{3}+\frac{1}{5}\left(\frac{2 n}{n^{2}+1}\right)^{5}+\cdots \infty$.
14. Verify Cayley - Hamiton theorem for the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 3 \\
2 & 1 & -1 \\
1 & -1 & 1
\end{array}\right)
$$

15. If $\cos (x+i y)=\cos \theta+i \sin \theta$, prove that $\cos 2 x+\cosh 2 y=2$.
16. Express $\sin ^{7} \theta$ in a series of sines of multiplies of θ.
17. Find $L^{-1}\left(\frac{s}{(s+2)^{2}}\right)$.
18. Four cards are drawn at random from a pack of 52 cards. Find the probability that
(i) They are a king, a queen, a jack and an ace.
(ii) Two are kings and two are queens.
(iii) Two are black and two are red.
(iv) Two cards of hearts and two cards of diamonds.

SECTION C

ANSWER ANY TWO QUESTIONS.

19. (a) If $y=\sin ^{-1} x$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}=0$ and $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$.
(b) Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.

$$
(12+8)
$$

20. (a) Find the eigen values and eigen vectors of the matrix $A=\left(\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right)$.
(b) Separate $\tan ^{-1}(x+i y)$ into real and imaginary parts.
21. (a) Express $\cos 6 \theta$ in terms of $\sin \theta$.
(b) Solve the equation $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-3 y=\sin t$ given that $y=\frac{d y}{d t}=0$ when $t=0$.

$$
(8+12)
$$

22. (a) Find $L^{-1}\left(\frac{1}{s(s+1)(s+2)}\right)$.
(b) Calculate the mean and standard deviation for the following table giving the age distribution of 542 members:

Age (in years)	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
Number of Members	3	61	132	153	140	51	2

